
corner rods. The gap and the filling-component radius can be varied to reduce the tempera- 
ture nonuniformity very considerably, which should be borne in mind in choosing these 
components and the jacket dimensions. 

NOTATION 

u, velocity; ~, dynamic viscosity; c, turbulent ~iscosity; ~, kinematic viscosity; p, 
density; c D, specific heat; D, diffusion coefficient; qv, volume heat production; ql' 
linear heat flux; ~, thermal conductivity; m, molecular mass; Qr, heat of reaction; z, 
longitudinal coordinate. Subscripts: I and II, reactions N204 = 2N02 and 2NO2 = 2NO + 02 
correspondingly; i) N204; 2) NO2; 3) NO; 4) 02; fu, fuel; c, cladding; f, frozen value; 
w, wall. 
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NUMERICAL MODELING OF MOTION OF AN AXISYMMETRIC BODY 

THROUGH A TUNNEL 

O. G. Goman, V. I. Karplyuk, and M. I. Nisht UDC 532.5 

The method of discrete vortices is used for a numerical investigation of the 
nonlinear unsteady problem of passage of an axisymmetric body through a co- 
axial thin-walled cylindrical tube of finite length. 

Because of the increased speed of trains and the development of tube-borne transport 
and other areas of technology it is becoming increasingly important to study the interac- 
tion of moving bodies and the solid boundaries surrounding them. 

The first approximate schemes for calculating the drag of a train moving within a 
tunnel were proposed at the end of the thirties and were based mainly on experimental data. 
For instance, in [I] a semiempirical method was developed of calculating the drag of a train 
on an open track and in a long tunnel (the tunnel was considered long if we can neglect the 
unsteady effects due to its ends). 

At present quite a wide circle of topics in the aerodynamics of fast trains has been 
investigated [2]. However, nonlinear problems have been examined only for steady motion 
[3, 4], and [4] presented the results of calculated steady flow of an infinite 
chain of containers on the basis of numerical solution of the full Navier--Stokes and 
Reynolds equations. 

Unsteady problems of the aerodynamic effect of a tunnel on a train have been investi- 
gated only approximately, in linear formulation, within the framework of planar and other 
models [5-8]. However, for short tunnels, the unsteady effects due to the entrance of the 
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F i g .  1.  S h a p e  o f  a v o r t e x  s h e e t  and  p o s i t i o n  
of the cone relative to the tunnel at time 
T = 60/23 (b) and T = 90/23 (a). 

train into the tunnel and its exit from the tunnel play an important role, and they are 
nonlinear, since they are due to flow separation in the entrance and exit tunnel sections. 

The present paper gives a numerical solution of the problem of passage of an axisym- 
metric body through a short tunnel in the form of a thin-walled tube coaxial with the 
moving body. All three phases of motion of the body through the tunnel have been investi- 
gated: the entrance process, the inside motion, and exit from the tunnel. At each time 
step we determined the pressure distribution over the body surface and on the internal 
walls of the tunnel and the drag coefficient of the moving body. (The drag force coeffi- 
cient obtained is only part of the total drag, since the friction force is not taken into 
account.) 

As an example we consider a sharp cone with a semivertex angle of 8 k = 30 ~ and a flat 
base, beginning to move impulsively from rest with constant speed U from an initial posi- 
tion at distance So from the tunnel entrance equal to the diameter of the cone base. 

It is postulated that in the process of motion axisymmetric vortex sheets are shed 
from the sharp edges of the cone and also from the entrance and exit ends of the tunnel, 
and that for the tunnel the vortices leave tangentially to the generators, and for the 
cone tangentially to the side surface. 

The problem was solved by the method of discrete vortices [9], according to which the 
surface of the conical body, the cylindrical tube, and the vortex sheets were modeled by 
a finite system of ring vortices. The boundary conditions of impermeability were fulfilled 
at control points located midway between the discrete vortices. To fulfill the Chaplygin-- 
Zhukov hypothesis at the sharp edges (places of release of the vortex sheets) the control 
points were located directly at the sharp edges, and the nearest free vortices were on 
tangents to the surface of the modeled body along the direction of release of the sheets. 
To make rational use of machine time on the side surface of the cone we used a nonuniform 
scheme of subdivision into discrete vortices and control points, and a uniform scheme on 
the surface of the cone base and on the tube. 

For a number of control points equal to m the surfaces of the body and the tunnel 
were modeled by a system of m - 3 ring vortices. The system of equations to determine the 
circulations of the m - 3 bound and the three free vortices shed into the flow at the com- 
puting time ~ from the sharp edges was adopted in the form 

i F ~  [%x cos (n, x) + v ~  cos (n, r)] + Wo = 2~ cos (U, n) - -  
! 1 = 1  

3 r n + ~ - -  1 

[v~ cos (n, x) + v,~ cos (n, r) l ,  "~ = 1, 2 ,  m .  SV �9 ~ �9 ~ 

i = 1  s~mJcl 

(I) 

149 



-/  

-2 
,q 

,4 

Z 
I 

I 

H 

,i \ 
/ / \ 

I w I 

C B D  E 

Fig. 2 

c~ 

o --_a "~ 

0 / Z 3 ~ -t; 

Fig. 3 

P 
\ 

o,5o 

-o,5o 

-,/oo 

o 

/,, 

60 120 8 c 

F i g .  4 

Fig. 2. Distribution of pressure coefficient over the sur- 
face of the cone and the inside wall of the tunnel [i) T = 
60/23; 2) 90/23; Lt = 0.8; Rt = 0.7]. 

Fig. 3. The cone drag coefficient c x as a function of time 
for tunnels of different radii and lengths: i) Lt = 0.8; 
Rt = 0.55; 2) 0.8 and 0.6; 3) 0.8 and 0.7; 4) 1.2 and 0.7; 
5) Rt = ~ (~ is the time of entrance, and 32 is the time 
of exit of the cone from the tunnel). 

Fig. 4. Comparison of the calculated and experimental 
values of the pressure coefficient on a sphere. 

All the quantities in the calculations were used in dimensionless form. As the scales 
we chose: for length, the cone diameter D; for the calculations, UD; for the induced veloci- 

Uz 
ties, U; for time, D/U; for pressure, the velocity head p~-- 

2 

The system of equations (i) was supplemented by the condition of conservation of 
circulation around a closed contour passing through the tube and spanning the vortex 
sheets shed from its ends: 

,. 8 mq-~--I 

~=k+2 i=2 s=m+ I 

(2) 

Here k is the number of bound discrete vortices, modeling the contour surface; and C is a 
constant determined from the initial conditions. If at the initial time T = 0 the surround- 
ing fluid is at rest, then C = O. 

The formulas for the velocities induced by the ring vortices were taken from [9], 
the potential of the velocities was found by integrating the velocity field [i0], and the 
pressure coefficient on the surface of the cone and the tunnel was found from the Cauchy-- 
Laplace integral. From the pressure distribution obtained at each time step we determined 
the drag force coefficient of the cone. 

A series of calculations was made for tunnels of different lengths (L t = 0.8, 1.2) and 
radii (R t = 0.55, 0.6, 0.7), and for a cone moving in an unbounded fluid R t = =. Some re- 
sults of the calculations are shown in Figs. 1-3. 
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It was observed that the mutual influence of the cone and the tunnel begins only from 
the time when the distance between them becomes less than 0.4, and appears as an increase 
of pressure on the internal tunnel walls and the side surface of the cone. Up to the time 
when the cone nose enters the tunnel the latter has in fact no significant influence on the 
structure and the intensity of the cone vortex sheet and on the intensity of the vortex 
sheets shed from the ends of the tunnel. 

At time Y = 50/23 the cone nose reaches the middle of the tunnel. On the part of the 
side surface of the cone that has entered the tunnel we note an increase of pressure coef- 
ficient. The same thing is observed on the inner surface of the tunnel. And on the side 
surface of the cone and on the inside of the tunnel the increase of pressure coefficient 
is directly proportional to the length and inversely proportional to the tunnel radius. 
Because of the increase of pressure coefficient on the side surface of the cone this time 
is characterized as the start of a sharp increase of the cone drag coefficient (Fig. 3). 

The most characteristic time is T = 60/23 when the entire cone enters the tunnel (Fig. 
i). At this time the vortices shed from the entrance end of the tunnel have maximum in- 
tensity and begin to be swirled by the strong flow of fluid leaving the side surface of 
the cone, in a counterclockwise spiral. The vortex sheet shed from the exit end of the 
tunnel is also swirled in a spiral, but clockwise, and its vortices do not attain the 
maximum intensity. 

At time ~ = 60/23, because of the considerable blocking of the section between the 
cone and the tunnel, there is a sharp increase of pressure on the side surface of the cone 
and the tunnel walls. The distribution of pressure coefficient over the surface of the 
cone and the tunnel has the form of a hump whose apex is ahead of the sharp edge of the 
cone. Directly at the sharp edge of the cone and on the surface of the tunnel opposite 
the edge of the cone the pressure coefficient falls because of the large tangential 
velocities (Fig. 2). 

At this time the drag coefficient c x of the cone reaches a maximum (Fig. 3), and here 
the value of the peak of the c x coefficient is greater, the smaller is the tunnel radius, 
and it can be several times greater than the value of c x for a cone moving according to 
the same law in a boundless fluid. 

Upon further passage of the cone into the tunnel we observe the very interesting 
phenomenon accompanied by a sharp fall of the cone drag coefficient (Fig. 3). This occurs 
in the time interval T = 60/23-70/23, and the narrower is the tunnel, the greater is this 
fall. For the tunnel with R t = 0.55 the minimum value of c x is roughly a factor of two 

less than is c x of a cone in a boundless fluid. A sharp fall of cone drag is observed at 
the moment when the cone nose exits from the tunnel, and is a consequence of both the re- 
duction of pressure on the side surface, and of the increase of base pressure due to out- 
flow of fluid into the base region via the slit between the middle of the body and the 
tunnel wall. 

As the cone moves towards the exit section the pressure coefficient on the inside 
tunnel walls changes from positive to negative. 

Immediately after the body exits from the tunnel (T = 80/23) the base pressure de- 
creases, and this phenomenon leads to the appearance of a second maximum of the pressure 
coefficient (Fig. 3). 

As the distance of the body from the tunnel increases the intensity of the vortices 
shed from the ends of the tunnel drops, the vortex sheets are broken up and drawn into the 
rarefaction region inside the tunnel (see Fig. i). The vortex sheet shed from the sharp 
edge of the cone is drawn along the axis of symmetry and broken up into two parts (the 
breakup occurs opposite the exit end of the tunnel). One part, located close to the base 
rim, is deflected out of the tunnel by the cone, and the other part, located inside the 
tunnel, is mixed with the vortices shed from the ends, and remains inside the tunnel. 

The distribution of pressure coefficient over the side surface of the cone is now 
independent of the tunnel radius and coincides with the value for a cone moving in a bound- 
less fluid according to the same law as for transit of the tunnel. The distribution of 
pressure coefficient over the base is also close to that for the case of motion in a bound- 
less fluid, although at time r = 90/23 the influence of the tunnel is still perceived (Fig. 
2). 
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After the cone has moved away from the exit section a distance on the order of a 
caliber the influence of the tunnel on the cone ceases, but in the tunnel itself a pres- 
sure oscillation at the walls is observed for a long time, due to the vortices remaining 
there. 

The authors know of no experimental data corresponding to the problem examined, with 
which they could compare, to assess the closeness of the calculated characteristics to the 
real flow picture, and therefore, in order to check the validity of the method they calcu- 
lated separated and unseparated flow over a sphere. The broken curve on Fig. 4 corresponds 
to the model of unseparated flow over a sphere, and hardly differs (with an error of less 

than 1%) from the theoretical curve p=i---~sin28c The solid curve corresponds to 
4 

separated flow over a sphere with a fixed separation location at e c = 140 ~ The points 
indicate the experimental results for separated flow over a sphere in the supercritical 
regime, taken from [ii]. From the latter data one can conclude that the computed results 
for passage of the body through the tunnel will satisfactorily describe the actual flow 
picture at Reynolds numbers for which a developed vortex wake is found behind the body. 

NOTATION 

U, velocity of the body; F~, Fsi , circulation of the bound and free ring vortices; 
Vux , Vur , Vsx i, Vsr i, components of the velocities of the ring vortices; x, r, axes of a 
cylindrical coordinate system; m, number of control points on the body surface and the 
tunnel; n, normal to the surface; cos(n, x), cos(n, r), cosines of the angles between the 
surfacenormal and the coordinate axes; Wo, unknown value for regularization; T, time; Rt, 
Lt, tunnel radius and length~ Cx, drag coefficient of the moving body; p, pressure coeffi- 
cient; 8k, half angle at the cone vertex; So, distance between the forward edge of the 
tunnel and the cone nose; 8c, polar coordinate of points on the surface of a sphere. 
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